Wojskowa Akademia Techniczna - Centralny System Uwierzytelniania
Strona główna

Statystyka

Informacje ogólne

Kod przedmiotu: WMETXCSI-19Z2-S
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Statystyka
Jednostka: Wydział Cybernetyki
Grupy:
Punkty ECTS i inne: (brak) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Forma studiów:

stacjonarne

Rodzaj studiów:

I stopnia

Rodzaj przedmiotu:

obowiązkowy

Forma zajęć liczba godzin/rygor:

wykład / 14 godzin / zaliczenie na ocenę

ćwiczenia / 12 godzin / zaliczenie na ocenę

laboratorium / 2 godziny / zaliczenie

Przedmioty wprowadzające:

Matematyka 1. / Student powinien znać: symbole i elementarne pojęcia logiki i teorii mnogości; funkcje elementarne; liczby rzeczywiste i zespolone; podstawowe pojęcia, określenia i twierdzenia algebry liniowej i geometrii analitycznej; rachunek wektorowy i macierzowy, przestrzenie wektorowe, układy liniowych równań algebraicznych i metody ich rozwiązywania; analityczne konstrukcje prostych i płaszczyzn; krzywe i powierzchnie drugiego stopnia.

Matematyka 2. / Student powinien znać: symbole, określenia, twierdzenia i przykłady dotyczące ciągów i szeregów liczbowych, rachunku różniczkowego i całkowego funkcji jednej zmiennej rzeczywistej oraz rachunku różniczkowego funkcji wielu zmiennych. Student powinien umieć obliczać granice ciągów i funkcji jednej zmiennej, znajdować pochodne i całki oznaczone i nieoznaczone oraz znajdować pochodne cząstkowe.

Matematyka 3. / Student powinien znać: symbole, określenia, twierdzenia i przykłady dotyczące rachunku różniczkowego i całkowego funkcji wielu zmiennych, równań różniczkowych zwyczajnych oraz pojęć prawdopodobieństwa, zmiennej losowej i rozkładu prawdopodobieństwa. Student powinien umieć obliczać całki wielokrotne i prawdopodobieństwa zdarzeń losowych.


Programy:

drugi semestr / kierunek Logistyka / wszystkie specjalności

Autor:

dr Lucjan Kowalski, dr hab. Marek Kojdecki

Bilans ECTS:

aktywność / obciążenie studenta w godzinach

studia stacjonarne

1. Udział w wykładach / 14

2. Udział w ćwiczeniach audytoryjnych / 14

3. Udział w ćwiczeniach laboratoryjnych / 2

4. Udział w ćwiczeniach projektowych / 0

5. Udział w seminariach / 0

6. Samodzielne studiowanie tematyki wykładów / 21

7. Samodzielne przygotowanie do ćwiczeń / 14

8. Samodzielne przygotowanie do laboratoriów / 4

9. Samodzielne przygotowanie do projektów / 0

10. Samodzielne przygotowanie do seminarium / 0

11. Udział w konsultacjach / 2

12. Przygotowanie do egzaminu / 0

13. Przygotowanie do zaliczenia / 4

14. Udział w egzaminie / 0

Sumaryczne obciążenie pracą studenta: 75 godzin / 2,5 punktu ECTS

Zajęcia z udziałem nauczycieli (1+2+3+4+5+11+14) 32 godziny / 1 punkt ECTS


Skrócony opis:

Przedmiot służy do poznania i zrozumienia przez studentów podstawowych pojęć i metod rachunkowych statystyki opisowej oraz opanowania elementarnych pojęć, twierdzeń i umiejętności rachunkowych z rachunku prawdopodobieństwa.

Pełny opis:

Wykład /metody dydaktyczne

Tematy kolejnych wykładów (po dwie godziny lekcyjne):

1. Rachunek prawdopodobieństwa. Zmienna losowa jednowymiarowa. Parametry rozkładu zmiennej losowej.

2. Rachunek prawdopodobieństwa. Zmienna losowa dwuwymiarowa; parametry rozkładu.

3. Rachunek prawdopodobieństwa. Zmienna losowa wielowymiarowa. Rozkłady brzegowe i warunkowe.

4. Statystyka opisowa. Wprowadzenie do badań statystycznych. Metody badań statystycznych. Analiza opisowa struktury zjawisk; miary położenia, rozproszenia i asymetrii.

5. Statystyka opisowa. Badanie szeregów czasowych. Indywidualne wskaźniki dynamiki. Tendencja rozwojowa zjawiska – trendy i ich typy. Graficzna prezentacja danych i jej wykorzystywanie.

6. Statystyka opisowa. Korelacja.

7. Statystyka opisowa. Regresja. Trend liniowy.

/ wykład z możliwym wykorzystaniem technik audiowizualnych, podanie zadań do samodzielnego rozwiązania i tematów do studiowania

Ćwiczenia /metody dydaktyczne

Tematy kolejnych zajęć (po dwie godziny lekcyjne):

1. Rachunek prawdopodobieństwa. Zmienna losowa jednowymiarowa. Parametry rozkładu zmiennej losowej.

2. Rachunek prawdopodobieństwa. Zmienna losowa dwuwymiarowa; parametry rozkładu.

3. Rachunek prawdopodobieństwa. Zmienna losowa wielowymiarowa. Rozkłady brzegowe i warunkowe.

4. Statystyka opisowa. Wprowadzenie do badań statystycznych. Metody badań statystycznych. Analiza opisowa struktury zjawisk; miary położenia, rozproszenia i asymetrii.

5. Statystyka opisowa. Badanie szeregów czasowych. Indywidualne wskaźniki dynamiki. Tendencja rozwojowa zjawiska – trendy i ich typy. Graficzna prezentacja danych i jej wykorzystywanie.

6. Statystyka opisowa. Korelacja.

7. Statystyka opisowa. Regresja. Trend liniowy.

/ ćwiczenia rachunkowe ułatwiające opanowanie, zrozumienie i usystematyzowanie wiedzy wyniesionej z wykładów i własnych studiów studentów oraz nabycie umiejętności rachunkowych, podanie zadań do samodzielnego rozwiązania i tematów do studiowania, pisemna praca kontrolna

Laboratoria /metody dydaktyczne

Tematy kolejnych zajęć (po dwie godziny lekcyjne):

1. Korelacja i regresja. Regresja liniowa.

/ ćwiczenia laboratoryjne z wykorzystaniem programów uczących i programów narzędziowych, ułatwiające opanowanie, zrozumienie i usystematyzowanie wiedzy wyniesionej z wykładów i własnych studiów studentów, pokaz przykładowych narzędzi obliczeniowych i obliczeń

Literatura:

podstawowa:

R. Leitner, J. Zacharski, Zarys matematyki wyższej, część III, WNT, 1994.

M. Cieciura, J. Zacharski, Metody probabilistyczne w ujęciu praktycznym, Vizja Press, 2007.

L. Kowalski, Statystyka, skrypt WAT, 2005

W. Krysicki, J. Bartos, Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Część I i II, PWN,1999.

J. Gawinecki, Matematyka dla informatyków, część I i II, Bell Studio, 2003.

uzupełniająca:

A. Plucińska, E. Pluciński, Probabilistyka, PWN, 2000.

W. Leksiński, J. Nabiałek, W. Żakowski, Matematyka. Definicje, twierdzenia, przykłady, zadania, WNT, 1992.

R. Leitner, M. Matuszewski, Z. Rojek, Zadania z matematyki wyższej, część I i II, WNT, 1998.

W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, część I i II, PWN, 2002.

W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, część I, WNT, 1995.

W. Stankiewicz, J. Wojtowicz, Zadania z matematyki dla wyższych uczelni technicznych, część II, WNT, 1995.

Efekty uczenia się:

Student, który zaliczył przedmiot,

W01 – Ma podstawową wiedzę, stanowiącą bazę dla zrozumienia i studiowania przedmiotów kierunkowych, w zakresie statystyki opisowej i elementarnej teorii prawdopodobieństwa. /K_W01

W02 – Zna podstawowe pojęcia i określenia statystyki opisowej. Zna podstawowe pojęcia, określenia i twierdzenia rachunku prawdopodobieństwa. Zna najważniejsze rozkłady prawdopodobieństwa. / K_W01

U01 – Umie posługiwać się w podstawowym zakresie językiem statystyki i rachunku prawdopodobieństwa. Umie obliczać prawdopodobieństwa zdarzeń opisanych zmiennymi losowymi dla najważniejszych rozkładów prawdopodobieństwa. / K_U07

U02 – Umie formułować i rozwiązywać proste problemy z wykorzystaniem pojęć i metod obliczeniowych statystyki opisowej oraz rachunku prawdopodobieństwa. / K_U07

U03 – Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł (także anglojęzycznych); potrafi interpretować uzyskane informacje i formułować wnioski. Ma wyrobioną wewnętrzną potrzebę i umiejętność ustawicznego uzupełniania i nowelizacji nabytej wiedzy poprzez samokształcenie. / K_U01, K_U06

K01 – Rozumie potrzebę ciągłego dokształcania się i odświeżania wiedzy w szczególności związanej ze złożoną strukturą matematyki. / K_K01

Metody i kryteria oceniania:

Przedmiot zaliczany jest na podstawie zaliczenia

sprawdzającego wiedzę (W01 i W02) i umiejętności (U01 i U02).

Zaliczenie przedmiotu przeprowadzane jest w formie pisemnej.

Warunkiem dopuszczenia do zaliczenia jest zaliczenie ćwiczeń.

Ćwiczenia audytoryjne łącznie z ćwiczeniami laboratoryjnymi zaliczane są na podstawie wyników prac kontrolnych przeprowadzanych pod bezpośrednią kontrolą podczas zajęć (U01, U02, W01, W02) lub w formie zadań do samodzielnego rozwiązania (U01, U02, U03).

Dodatkowo studenci otrzymują wskazówki do samodzielnego studiowana z zachętą do korzystania z różnorodnych źródeł wiedzy (U03 i K01).

Skala ocen: dostatecznie (3) – student zna i rozumie większość wyłożonych zagadnień, umie rozwiązywać najprostsze zadania rachunkowe, rozumie treść najważniejszych twierdzeń; dobrze (4) – student zna i rozumie znaczną większość wyłożonych zagadnień, umie formułować i rozwiązywać najprostsze zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; bardzo dobrze (5) – student zna i rozumie wszystkie wyłożone zagadnienia, umie formułować i rozwiązywać zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; dość dobrze (3,5) i ponad dobrze (4,5) – pośrednio między dostatecznie i dobrze oraz między dobrze i bardzo dobrze.

Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Wojskowa Akademia Techniczna.
ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa 46 tel: +48 261 839 000 https://www.wojsko-polskie.pl/wat/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-5 (2024-09-13)