Wojskowa Akademia Techniczna - Centralny System Uwierzytelniania
Strona główna

Computer Aided Manufacturing

Informacje ogólne

Kod przedmiotu: WMTLXXXE-CAM
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Computer Aided Manufacturing
Jednostka: Wydział Mechatroniki, Uzbrojenia i Lotnictwa
Grupy:
Punkty ECTS i inne: (brak) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Forma studiów:

stacjonarne

Rodzaj studiów:

LLP Erasmus

Rodzaj przedmiotu:

obowiązkowy

Forma zajęć liczba godzin/rygor:

(tylko po angielsku) W 16/x, C 8/z, L 48/z, Proj 8/+, total: 80 hours,

5 points of ECTS


Przedmioty wprowadzające:

(tylko po angielsku) Engineering graphics: the student has an elementary knowledge of how to prepare and read technical documentation.

Materials science: the student has an elementary knowledge of the properties of engineering materials.

The basics of machine construction: the student has an elementary knowledge in the field of calculations and construction of machine parts.

Production engineering: the student has basic knowledge of the machining method, cutting tools and machining holders as well as the design of simple technological processes.

Advanced manufacturing techniques: the student has an basic knowledge of numerical control of technological machines, determination of dimensions of machining tools, work parameters, knowledge of the general structure of programs, tool movements, etc.


Programy:

(tylko po angielsku) mechatronics / computer techniques in mechatronics

Autor:

(tylko po angielsku) dr hab. inż. Tomasz MAJEWSKI

ppłk dr inż. Robert PASZKOWSKI

dr inż. Marcin SARZYŃSKI

mgr inż. Katarzyna SARZYŃSKA


Bilans ECTS:

(tylko po angielsku) Activity / student`s liabilities in hours:

1. Participation in lectures /16

2. Participation in laboratory classes / 48

3. Participation training classes / 8

4. Participation in project classes / 8

5. Individual studying of lectures` topics/ 6

6. Individual preparation to laboratory classes / 50

7. Individual preparation to training classes / 6

8. Individual preparation to seminars / 0

9. Realization of the project / 10

10.Participation in consultations / 6

11. Preparation to the exam / 0

12. Preparation to the acceptance of the lectures / 0

13. Participation in the exam / 2


Total student`s liabilities with the work: 160 hours / 5 ECTS

Lectures with participation of professors (1+2+3+4+9+10+13): 88 hours/ 3.5 ECTS

Lessons linked with scientific activity / 4 ETCS


Skrócony opis: (tylko po angielsku)

Familiarization with the methods of manual programming of numerically controlled machines using parametric programming, subroutines and canned cycles. Designing the machining process of the detail using CAM software.

Pełny opis: (tylko po angielsku)

Lectures

1. Workshop programming of CNC machine. / 3*

Parametric programming. Subroutines. Canned cycles of numerically controlled machines.

2. Basics of the selected CNC machine control system. / 3*

Characteristics of the Fanuc control system. The specific features of the Fanuc control system: preparatory and auxiliary functions, construction of control system panel, definitions of circular movements, canned cycles. Canned cycles of the Pronum control system.

3. Basics of using ZERO-OSN software for aided manufacturing. / 2*

Introduction. Using tool and machine catalogues. Designing of lathe machining. Machining simulation.

4. Basic usage of EdgeCam software for aided manufacturing. / 2*

CAM software structure - functional modules. Creating drawing objects, importing objects from other CAD programs.

Usage of structural and technological databases and tool catalogs.

5. Advanced CAM software functions on the example of the EdgeCam program. / 2*

Selection of technological parameters and tools for milling and lathe processes. Designing of lathe processes.

Designing of milling operations (2D and 3D). Machining simulation. Generating machine codes - design and usage of postprocessors.

6. Basics of using Mastercam aided manufacturing software. / 2*

Mastercam program interface - functional modules. Customizing the software to suit one’s needs. The use of the construction and technological databases and tool catalogs. Drawing objects, creating geometry chains, tool path manager, solids, import of universal data exchange files (.step,. parasolid). Modeling and machining design details of low complexity in modules for machining with turning and milling.

7. Advanced CAM software functions on the example of the Mastercam program. / 2*

Selection of technological parameters and tools for milling and turning processes. Designing of turning processes.

Designing milling operations (2D and 3D). Machining simulation. Dimensioning, operating parameters, compensation of tool edge radius. Generating machine codes - designing and using postprocessors.

Training classes

1. Application of basic ZERO-OSN program modules for the design of machining processes. / 2*

Familiarization with the basic modules of the ZERO-OSN program: a database of machines, tools and tool holders, calculators of technological parameters and the module for designing of the lathe process.

2. Designing the process of machining a simple shaft on the CNC lathe using the ZERO-OSN software / 4*

Designing the machining process of the shaft with geometry of cylinder, ball, cone and thread using the ZERO-OSN program.

3. Designing the process of machining a complex shaft on a CNC lathe using the ZERO-OSN program using canned cycles / 2

Designing the process of machining a cylinder with a complex shape containing elements of a cylinder, ball, cone and thread using canned cycles in ZERO-OSN software.

Laboratory classes

1. Designing the shaft machining process on a CNC lathe using canned cycles. / 4*

Designing the shaft machining process using canned cycles of the PRONUM CNC lathe.

2. Designing the engraving process on a CNC milling machine. / 4

Designing the machining process of the selected text on the engraving plate for the FANUC CNC milling machine.

3. Designing of machining of a simple shaft in a turning module. / 4*

Designing the process of machining a step shaft and a cone using the EdgeCam software. Importing geometry from other programs, changing of the part orientation and adjusting the stock and choosing the chuck from the fixture database. Facing, turning of the shaft.

4. Designing of machining a complex shaft in a turning module. / 4

Designing a shaft machining process with complex geometry using the EdgeCam software. Editing a tool set in a toolstore, changing of the fixture and position of the cutting insert. Turning operations: i.e. grooving. Defining the toolpath in every turning operation.

5. Designing of machining of shaft (high level of complexity): internal turning, threads, grooves. / 2

Design of machining a shaft (geometry of a high level of complexity) using the EdgeCam software. Lathe operations: drilling, internal turning, threading.

6. Designing of machining of a simple part in a milling module. / 4

Design the milling process using the EdgeCam software. Import of solid model from other CAD programs. Defining part geometry in built-in Part Modeler module. Adjusting the stock, importing the stock from the solid model. Defining the work coordinate system (origin), basic milling operations.

7. Design of machining of a complex element in a milling module. / 4

Designing the machining of bosses and pockets. The use of roughing, finishing, drilling holes. Machining of open pockets and free form surfaces. Machining of rest roughing.

8. Designing milling of a detail with a high level of complexity: pockets and bosses, threads and profile machining. / 2

Designing complex milling operations. Profile processing, engraving. Loading specific stock as a result of previous machining operations. ZX-> XYZ axis system translation (from lathe to milling operations).

9. Designing the machining of a detail with a simple geometry using basic turning operations. / 4*

Defining the machine, stock, fixing the stock, creating cycles: facing, roughing, profiling, simulation of machining sequence.

10. Designing machining of axial-symmetric elements with a high level of complexity: internal profiles, threads, grooves. / 8

Operations of positioning and rotating the stock, tailstock functions. Defining a machine, a stock, fixing the stock, creating cycles: facing, roughing, profiling, drilling, reaming, boring, grooving, threading, machining sequence simulation, report generation, importing parts geometry from other CAD programs.

11. Designing machining of parts with simple geometry using basic milling operations. / 2

Defining the machine, creating drilling and milling cycles, milling straight cuts, milling external contours, chamfering, sequence simulation.

12. Designing machining of a component with a high level of complexity using the milling module. / 4

Milling cutouts using the pocket processing method, designing machining in the surface milling module.

13. Designing of the machining process of the detail with a high level of complexity. / 2

Pockets and bosses, threads and profile machining with the use of turning and milling operations immediately following each other. Simulation of machining sequence.

Project/practical method

Individual task. Design of the manufacturing process of the selected detail and its simulation, preparation of manufacturing report. / 8

* content conducted individually under the guidance of a teacher with students

Literatura: (tylko po angielsku)

Basic:

 J. Kosmol, Automatyzacja obrabiarek i obróbki skrawaniem, 1995.

 M. Drzycimski, J. Plichta, Podstawy programowania obrabiarek sterowanych numerycznie, 2002.

 E. Chlebus, Techniki komputerowe CAX w inżynierii produkcji, 2000.

 M. Bednarek, Obrabiarki sterowane numerycznie – podstawy eksploatacji, 1999.

 K. Augustyn, EdgeCam – komputerowe wspomaganie wytwarzania, 2006.

 P. Kochan, Edgecam. Wieloosiowe toczenie CNC, Helion, Gliwice 2017

 P. Kochan, Edgecam. Wieloosiowe frezowanie CNC, Helion, Gliwice 2014.

Complementary:

 M. Miecielica, Komputerowe wspomaganie wytwarzania CAM, 1999.

 T. Poziemski Podstawy technologii na obrabiarki sterowane numerycznie,1988.

 B. Stach, Podstawy programowania obrabiarek sterowanych numerycznie, 1999.

 Pakiet materiałów firmy CNC Software inc, Szybki start w MastercamX5.

 Pakiet materiałów firmy CNC Software inc, Jak to zrobić w MastercamX5.

 Pakiet materiałów firmy CNC Software inc, MastercamX5 – Machine Simulation.

Efekty uczenia się: (tylko po angielsku)

W1 / The student has basic knowledge of production engineering of mechanical parts using automated production methods. / K_W09

W2 / The student has ordered knowledge of the recording of technological processes and their simulation using specialized software aided manufacturing process. / K_W12

U1 / The student is able to design technological processes for the production of mechatronic devices for the numerically controlled machine tools. / K_U15

U2 / The student can design the process of producing the indicated workpiece on a CNC machine using the appropriate programming language and verify the correctness of this process using the advanced simulator. / K_U18

Metody i kryteria oceniania: (tylko po angielsku)

The subject is accepted on the basis of: exam.

Training classes are accepted on the basis of: acceptance without the mark

Laboratory classes are accepted on the basis of: acceptance without the mark

Project is accepted on the basis of: acceptance with the mark

Exam of the subject is conducted in the written form.

The condition to admit to an exam is: acceptance all of training and laboratory classes and project.

The achievement of the effect W1 and W2 - is verified during exam and training classes

The achievement of the effect U1 and U2 - is checked during exam and training and laboratory classes

The mark „very good” is given to the student who will answer properly no less than 90% of questions asked during the exam.

The mark „good plus” is given to the student who will answer properly no less than 80% of questions asked during the exam.

The mark „ good” is given to the student who will answer properly no less than 70% of questions asked during the exam.

The mark „satisfactory plus” is given to the student who will answer properly no less than 60% of questions asked during the exam.

The mark „satisfactory” is given to the student who will answer properly no less than 51% of questions asked during the exam.

The mark „unsatisfactory” is given to the student who will answer properly less than 51% of questions asked during the exam.

Praktyki zawodowe: (tylko po angielsku)

not applicable

Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Wojskowa Akademia Techniczna.
ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa 46 tel: +48 261 839 000 https://www.wojsko-polskie.pl/wat/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-8 (2024-11-08)