Wojskowa Akademia Techniczna - Centralny System Uwierzytelniania
Strona główna

Matematyka 1

Informacje ogólne

Kod przedmiotu: WMEMXCSI-19Z1-M1
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Matematyka 1
Jednostka: Wydział Cybernetyki
Grupy:
Punkty ECTS i inne: (brak) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Forma studiów:

stacjonarne

Rodzaj studiów:

I stopnia

Rodzaj przedmiotu:

obowiązkowy

Forma zajęć liczba godzin/rygor:

Wykład 26h (egzamin)

Ćwiczenia 34h (zaliczenie na ocenę)

Przedmioty wprowadzające:

Student powinien znać pojęcia, określenia i symbole matematyczne objęte podstawą programową z matematyki w zakresie rozszerzonym z logiki, teorii zbiorów, planimetrii, stereometrii, trygonometrii, geometrii analitycznej, funkcji elementarnych, ciągów liczbowych i probabilistyki.

Autor:

Dyrektor Instytutu Matematyki i Kryptologii

Bilans ECTS:

1. Udział w wykładach / 26

2. Udział w ćwiczeniach rachunkowych / 34

3. Udział w ćwiczeniach laboratoryjnych / 0

4. Udział w ćwiczeniach projektowych / 0

5. Udział w seminariach / 0

6. Samodzielne studiowanie tematyki wykładów / 52

7. Samodzielne przygotowanie do ćwiczeń / 60

8. Samodzielne przygotowanie do laboratoriów / 0

9. Realizacja projektu / 0

10. Samodzielne przygotowanie do seminarium / 0

11. Udział w konsultacjach / 2

12. Przygotowanie do egzaminu / 6

13. Przygotowanie do zaliczenia / 0

14. Udział w egzaminie / 2

Sumaryczne obciążenie pracą studenta: 182 godziny / 6 punktów ECTS

Zajęcia:

– z udziałem nauczycieli (1+2+3+4+5+11+14): 62 godziny / 2 punkty ECTS

– powiązane z działalnością naukową (1 do 10): 172 godziny / 6 punktów ECTS

– o charakterze praktycznym (2+3+4+7+8+9): 94 godziny / 3 punkty ECTS

Skrócony opis:

Przedmiot służy do poznania i zrozumienia przez studentów podstawowych pojęć i twierdzeń matematyki, szczególnie algebry z geometrią analityczną, oraz opanowania elementarnych umiejętności rachunkowych z zakresem wiedzy obejmującym: liczby rzeczywiste; funkcje elementarne; liczby zespolone; macierze, wyznaczniki, układy liniowych równań algebraicznych, przestrzenie wektorowe; proste, płaszczyzny i powierzchnie drugiego stopnia w przestrzeni trójwymiarowej.

Pełny opis:

Wykład

Tematy kolejnych wykładów (po dwie godziny lekcyjne):

1. Elementy teorii zbiorów. Zbiory liczbowe. Działania na zbiorach. Odwzorowania i ich właściwości. Relacje. Przeliczalność zbioru.

2. Funkcje elementarne. Określenie i właściwości funkcji. Funkcje trygonometryczne. Tożsamości trygonometryczne. Funkcje cyklometryczne. Funkcje wykładnicze i logarytmiczne, funkcje hiperboliczne.

3. Struktury algebraiczne. Zbiory liczbowe. Działania arytmetyczne. Grupa. Ciało. Ciało liczb rzeczywistych.

4. Liczby zespolone. Ciało liczb zespolonych. Postacie liczb zespolonych: algebraiczna, trygonometryczna, wykładnicza. Potęga i pierwiastek liczby zespolonej. Zbiory na płaszczyźnie zespolonej.

5. Liczby zespolone. Wielomiany nad ciałem liczb zespolonych. Zasadnicze twierdzenie algebry. Rozkład wielomianu zespolonego lub rzeczywistego na czynniki.

6. Macierze i wyznaczniki. Macierze. Rachunek macierzowy. Wyznaczniki i ich właściwości.

7. Macierze i wyznaczniki. Macierz odwrotna. Rząd macierzy.

8. Układy liniowych równań algebraicznych. Metoda eliminacji Gaussa. Wzory Cramera. Twierdzenie Kroneckera-Capelliego. Równania macierzowe.

9. Przestrzenie wektorowe. Określenie przestrzeni wektorowej. Kombinacja liniowa wektorów. Układ liniowo niezależny wektorów. Baza i wymiar przestrzeni liniowej. Podprzestrzeń.

10. Przestrzenie wektorowe. Przekształcenie liniowe. Macierz przekształcenia. Wektory i wartości własne macierzy.

11. Geometria analityczna. Wektory swobodne. Iloczyny: skalarny, wektorowy, mieszany. Norma wektora, kąt między wektorami.

12. Geometria analityczna. Afiniczna przestrzeń euklidesowa. Prosta i płaszczyzna w przestrzeni trójwymiarowej. Zagadnienia geometryczne: proste, płaszczyzny, rzuty prostokątne i symetrie. Proste konstrukcje geometryczne.

13. Geometria analityczna. Krzywe płaskie drugiego stopnia. Powierzchnie drugiego stopnia w przestrzeni trójwymiarowej.

Ćwiczenia

Tematy kolejnych zajęć (po dwie godziny lekcyjne):

1. Elementy logiki. Symbole logiczne, zdania, tautologie, kwantyfikatory.

2. Elementy teorii zbiorów. Zbiory liczbowe. Działania na zbiorach. Odwzorowania i ich właściwości. Relacje. Przeliczalność zbioru.

3. Funkcje elementarne. Określenie i właściwości funkcji.. Funkcje trygonometryczne. Tożsamości trygonometryczne. Funkcje cyklometryczne.

4. Funkcje elementarne. Funkcje wykładnicze i logarytmiczne, funkcje hiperboliczne.

5. Struktury algebraiczne. Zbiory liczbowe. Działania arytmetyczne. Grupa. Ciało. Ciało liczb rzeczywistych.

6. Liczby zespolone. Ciało liczb zespolonych. Postacie liczb zespolonych: algebraiczna, trygonometryczna, wykładnicza. Potęga i pierwiastek liczby zespolonej. Zbiory na płaszczyźnie zespolonej.

7. Liczby zespolone. Wielomiany nad ciałem liczb zespolonych. Zasadnicze twierdzenie algebry. Rozkład wielomianu zespolonego lub rzeczywistego na czynniki.

8. Macierze i wyznaczniki. Macierze. Rachunek macierzowy. Wyznaczniki i ich właściwości.

9. Macierze i wyznaczniki. Macierz odwrotna. Rząd macierzy.

10. Układy liniowych równań algebraicznych. Metoda eliminacji Gaussa. Wzory Cramera. Twierdzenie Kroneckera-Capelliego. Równania macierzowe.

11. Przestrzenie wektorowe. Określenie przestrzeni wektorowej. Kombinacja liniowa wektorów. Układ liniowo niezależny wektorów.

12. Przestrzenie wektorowe. Baza i wymiar przestrzeni liniowej. Podprzestrzeń.

13. Przestrzenie wektorowe. Przekształcenie liniowe. Macierz przekształcenia. Wektory i wartości własne macierzy.

14. Geometria analityczna. Wektory swobodne. Iloczyny: skalarny, wektorowy, mieszany. Norma wektora, kąt między wektorami.

15. Geometria analityczna. Afiniczna przestrzeń euklidesowa. Prosta i płaszczyzna w przestrzeni trójwymiarowej.

16. Geometria analityczna. Zagadnienia geometryczne: proste, płaszczyzny, rzuty prostokątne i symetrie. Proste konstrukcje geometryczne.

17. Geometria analityczna. Krzywe płaskie drugiego stopnia. Powierzchnie drugiego stopnia w przestrzeni trójwymiarowej.

Literatura:

Podstawowa:

  • R. Leitner, Zarys matematyki wyższej, część I i II, WNT, 1994.
  • R. Leitner, J. Zacharski, Zarys matematyki wyższej, część III, WNT, 1994.
  • J. Gawinecki, Matematyka dla informatyków, część I i II, Bell Studio, 2003.
  • R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej, część I i II, WNT, 1998.
  • J. Piasecka, Algebra liniowa z elementami geometrii. Teoria, przykłady, zadania, Bell Studio, 2019.
  • W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, część I i II, PWN, 2002.
  • Z. Domański, J. Gawinecki, Algebra w zadaniach, skrypt WAT, 1989.

Uzupełniająca:

  • W. Leksiński, J. Nabiałek, W. Żakowski, Matematyka. Definicje, twierdzenia, przykłady, zadania, WNT, 1992.
  • W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, część I, WNT, 1995.
  • W. Stankiewicz, J. Wojtowicz, Zadania z matematyki dla wyższych uczelni technicznych, część II, WNT, 1995.
Efekty uczenia się:

Symbol —— efekt kształcenia —— odniesienie do efektów kierunku:

Student, który zaliczył przedmiot:

  • W01 —— Posiada podstawową wiedzę, stanowiącą bazę dla zrozumienia i studiowania przedmiotów kierunkowych, w zakresie algebry z geometrią. Zna symbole i elementarne pojęcia logiki i teorii mnogości. Zna funkcje elementarne. —— K_W01
  • W02 —— Zna liczby rzeczywiste i zespolone. Poznał i rozumie zasadnicze twierdzenie algebry. Opanował rachunek wektorowy i macierzowy, zna właściwości skończenie wymiarowych przestrzeni wektorowych, rozumie pojęcia bazy przestrzeni wektorowej i niezależności układu wektorów. Zna określenie układu liniowych równań algebraicznych i rozumie pojęcie jego rozwiązania. W zakresie geometrii zna podstawy geometrii analitycznej, równania prostej, płaszczyzny oraz wybranych krzywych płaskich i powierzchni drugiego stopnia w przestrzeni trójwymiarowej. —— K_W01
  • U01 —— Umie posługiwać się w elementarnym zakresie językiem algebry i geometrii analitycznej, wykorzystując właściwe symbole i odpowiednie twierdzenia. Umie obliczać wyznaczniki macierzy. Umie wyznaczać macierze odwrotne. Umie rozwiązywać proste układy liniowych równań algebraicznych. Umie rozkładać wektory w bazie przestrzeni wektorowej. Umie wykonywać analitycznie proste konstrukcje geometryczne z użyciem prostych i płaszczyzn. —— K_U02, K_U07
  • U02 —— Umie formułować i rozwiązywać proste problemy z wykorzystaniem rachunku wektorowego, rachunku macierzowego, układów liniowych równań algebraicznych i geometrii analitycznej. —— K_U07
  • U03 —— Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł (także anglojęzycznych); potrafi interpretować uzyskane informacje i formułować wnioski. Ma wyrobioną wewnętrzną potrzebę i umiejętność ustawicznego uzupełniania i nowelizacji nabytej wiedzy poprzez samokształcenie. —— K_U09
  • K01 —— Rozumie potrzebę ciągłego dokształcania się i odświeżania wiedzy, w szczególności związanej ze złożoną strukturą matematyki. —— K_K01
Metody i kryteria oceniania:

  • Przedmiot zaliczany jest na podstawie egzaminu sprawdzającego wiedzę (W01 i W02) i umiejętności (U01 i U02).
  • Egzamin przeprowadzany jest w formie pisemnej lub pisemnej i ustnej.
  • Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń.
  • Ćwiczenia zaliczane są na podstawie wyników prac kontrolnych przeprowadzanych pod bezpośrednią kontrolą podczas zajęć (U01, U02, W01, W02) lub w formie zadań do samodzielnego rozwiązania (U01, U02, U03). Dodatkowo studenci otrzymują wskazówki do samodzielnego studiowana z zachętą do korzystania z różnorodnych źródeł wiedzy (U03 i K01).

Skala ocen:

  • dostatecznie (3) – student zna i rozumie większość wyłożonych zagadnień, umie rozwiązywać najprostsze zadania rachunkowe, rozumie treść najważniejszych twierdzeń
  • dobrze (4) – student zna i rozumie znaczną większość wyłożonych zagadnień, umie formułować i rozwiązywać najprostsze zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń
  • bardzo dobrze (5) – student zna i rozumie wszystkie wyłożone zagadnienia, umie formułować i rozwiązywać zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń
  • dość dobrze (3,5) i ponad dobrze (4,5) – pośrednio między dostatecznie i dobrze oraz między dobrze i bardzo dobrze
Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Wojskowa Akademia Techniczna.
ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa 46 tel: +48 261 839 000 https://www.wojsko-polskie.pl/wat/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-5 (2024-09-13)