Matematyka 1
Informacje ogólne
Kod przedmiotu: | WIGXXWSJ-M1-19Z |
Kod Erasmus / ISCED: | (brak danych) / (brak danych) |
Nazwa przedmiotu: | Matematyka 1 |
Jednostka: | Wydział Cybernetyki |
Grupy: | |
Punkty ECTS i inne: |
(brak)
|
Język prowadzenia: | polski |
Forma studiów: | stacjonarne |
Rodzaj studiów: | jednolite magisterskie |
Forma zajęć liczba godzin/rygor: | realizowane formy zajęć: W – wykład, C –- ćwiczenia audytoryjne, L – ćwiczenia laboratoryjne, P – ćwiczenia projektowe, S – seminarium; rygor: x – egzamin, + – zaliczenie na ocenę, z – zaliczenie ogólne Studia stacjonarne: W 26 /x; C 34 /+; razem: 60 godzin, 6 punktów ECTS Studia niestacjonarne: W 16 /x; C 20 /+; razem: 36 godzin, 6 punktów ECTS |
Przedmioty wprowadzające: | Matematyka ze szkoły średniej / Student powinien znać pojęcia, określenia i symbole matematyczne objęte podstawą programową z matematyki w zakresie rozszerzonym z logiki, teorii zbiorów, planimetrii, stereometrii, trygonometrii, geometrii analitycznej, funkcji elementarnych, ciągów liczbowych i probabilistyki. |
Programy: | semestr studiów / kierunek studiów / specjalność pierwszy semestr / wszystkie kierunki techniczne / wszystkie specjalności |
Autor: | dr hab. Marek Kojdecki |
Bilans ECTS: | Studia stacjonarne: W 26 /x; C 34 /+; razem: 60 godzin, 6 punktów ECTS Studia niestacjonarne: W 16 /x; C 20 /+; razem: 36 godzin, 6 punktów ECTS |
Skrócony opis: |
Przedmiot służy do poznania i zrozumienia przez studentów podstawowych pojęć i twierdzeń matematyki, szczególnie algebry z geometrią analityczną, oraz opanowania elementarnych umiejętności rachunkowych z zakresem wiedzy obejmującym: liczby rzeczywiste; funkcje elementarne; liczby zespolone; macierze, wyznaczniki, układy liniowych równań algebraicznych, przestrzenie wektorowe; proste, płaszczyzny i powierzchnie drugiego stopnia w przestrzeni trójwymiarowej. |
Pełny opis: |
Wykład /metody dydaktyczne Tematy kolejnych wykładów (po dwie godziny lekcyjne): 1. Elementy teorii zbiorów. Zbiory liczbowe. Działania na zbiorach. Odwzorowania i ich właściwości. Relacje. Przeliczalność zbioru. 2. Funkcje elementarne. Określenie i właściwości funkcji. Funkcje trygonometryczne. Tożsamości trygonometryczne. Funkcje cyklometryczne. Funkcje wykładnicze i logarytmiczne, funkcje hiperboliczne. 3. Struktury algebraiczne. Zbiory liczbowe. Działania arytmetyczne. Grupa. Ciało. Ciało liczb rzeczywistych. 4. Liczby zespolone. Ciało liczb zespolonych. Postacie liczb zespolonych: algebraiczna, trygonometryczna, wykładnicza. Potęga i pierwiastek liczby zespolonej. Zbiory na płaszczyźnie zespolonej. 5. Liczby zespolone. Wielomiany nad ciałem liczb zespolonych. Zasadnicze twierdzenie algebry. Rozkład wielomianu zespolonego lub rzeczywistego na czynniki. 6. Macierze i wyznaczniki. Macierze. Rachunek macierzowy. Wyznaczniki i ich właściwości. 7. Macierze i wyznaczniki. Macierz odwrotna. Rząd macierzy. 8. Układy liniowych równań algebraicznych. Metoda eliminacji Gaussa. Wzory Cramera. Twierdzenie Kroneckera-Capelliego. Równania macierzowe. 9. Przestrzenie wektorowe. Określenie przestrzeni wektorowej. Kombinacja liniowa wektorów. Układ liniowo niezależny wektorów. Baza i wymiar przestrzeni liniowej. Podprzestrzeń. 10. Przestrzenie wektorowe. Przekształcenie liniowe. Macierz przekształcenia. Wektory i wartości własne macierzy. 11. Geometria analityczna. Wektory swobodne. Iloczyny: skalarny, wektorowy, mieszany. Norma wektora, kąt między wektorami. 12. Geometria analityczna. Afiniczna przestrzeń euklidesowa. Prosta i płaszczyzna w przestrzeni trójwymiarowej. Zagadnienia geometryczne: proste, płaszczyzny, rzuty prostokątne i symetrie. Proste konstrukcje geometryczne. 13. Geometria analityczna. Krzywe płaskie drugiego stopnia. Powierzchnie drugiego stopnia w przestrzeni trójwymiarowej. / wykład z możliwym wykorzystaniem technik audiowizualnych; podanie zadań do samodzielnego rozwiązania i tematów do studiowania Ćwiczenia /metody dydaktyczne Tematy kolejnych zajęć (po dwie godziny lekcyjne): 1. Elementy logiki. Symbole logiczne, zdania, tautologie, kwantyfikatory. 2. Elementy teorii zbiorów. Zbiory liczbowe. Działania na zbiorach. Odwzorowania i ich właściwości. Relacje. Przeliczalność zbioru. 3. Funkcje elementarne. Określenie i właściwości funkcji. Funkcje trygonometryczne. Tożsamości trygonometryczne. Funkcje cyklometryczne. 4. Funkcje elementarne. Funkcje wykładnicze i logarytmiczne, funkcje hiperboliczne. 5. Struktury algebraiczne. Zbiory liczbowe. Działania arytmetyczne. Grupa. Ciało. Ciało liczb rzeczywistych. 6. Liczby zespolone. Ciało liczb zespolonych. Postacie liczb zespolonych: algebraiczna, trygonometryczna, wykładnicza. Potęga i pierwiastek liczby zespolonej. Zbiory na płaszczyźnie zespolonej. 7. Liczby zespolone. Wielomiany nad ciałem liczb zespolonych. Zasadnicze twierdzenie algebry. Rozkład wielomianu zespolonego lub rzeczywistego na czynniki. 8. Macierze i wyznaczniki. Macierze. Rachunek macierzowy. Wyznaczniki i ich właściwości. 9. Macierze i wyznaczniki. Macierz odwrotna. Rząd macierzy. 10. Układy liniowych równań algebraicznych. Metoda eliminacji Gaussa. Wzory Cramera. Twierdzenie Kroneckera-Capelliego. Równania macierzowe. 11. Przestrzenie wektorowe. Określenie przestrzeni wektorowej. Kombinacja liniowa wektorów. Układ liniowo niezależny wektorów. 12. Przestrzenie wektorowe. Baza i wymiar przestrzeni liniowej. Podprzestrzeń. 13. Przestrzenie wektorowe. Przekształcenie liniowe. Macierz przekształcenia. Wektory i wartości własne macierzy. 14. Geometria analityczna. Wektory swobodne. Iloczyny: skalarny, wektorowy, mieszany. Norma wektora, kąt między wektorami. 15. Geometria analityczna. Afiniczna przestrzeń euklidesowa. Prosta i płaszczyzna w przestrzeni trójwymiarowej. 16. Geometria analityczna. Zagadnienia geometryczne: proste, płaszczyzny, rzuty prostokątne i symetrie. Proste konstrukcje geometryczne. 17. Geometria analityczna. Krzywe płaskie drugiego stopnia. Powierzchnie drugiego stopnia w przestrzeni trójwymiarowej. / ćwiczenia rachunkowe ułatwiające opanowanie, zrozumienie i usystematyzowanie wiedzy wyniesionej z wykładów i własnych studiów studentów oraz nabycie umiejętności rachunkowych; podanie zadań do samodzielnego rozwiązania i tematów do studiowania; pisemna praca kontrolna |
Literatura: |
podstawowa: R. Leitner, Zarys matematyki wyższej, część I i II, WNT, 1994. R. Leitner, J. Zacharski, Zarys matematyki wyższej, część III, WNT, 1994. J. Gawinecki, Matematyka dla informatyków, część I i II, Bell Studio, 2003. R. Leitner, M. Matuszewski, Z. Rojek, Zadania z matematyki wyższej, część I i II, WNT, 1998. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, część I i II, PWN, 2002. Z. Domański, J. Gawinecki, Algebra w zadaniach, skrypt WAT, 1989. uzupełniająca: W. Leksiński, J. Nabiałek, W. Żakowski, Matematyka. Definicje, twierdzenia, przykłady, zadania, WNT, 1992. W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, część I, WNT, 1995. W. Stankiewicz, J. Wojtowicz, Zadania z matematyki dla wyższych uczelni technicznych, część II, WNT, 1995. |
Efekty uczenia się: |
symbol / efekt kształcenia / odniesienie do efektów kierunku Student, który zaliczył przedmiot, W01 – Posiada podstawową wiedzę, stanowiącą bazę dla zrozumienia i studiowania przedmiotów kierunkowych, w zakresie algebry z geometrią. Zna symbole i elementarne pojęcia logiki i teorii mnogości. Zna funkcje elementarne. / K_W__ W02 – Zna liczby rzeczywiste i zespolone. Poznał i rozumie zasadnicze twierdzenie algebry. Opanował rachunek wektorowy i macierzowy, zna właściwości skończenie wymiarowych przestrzeni wektorowych, rozumie pojęcia bazy przestrzeni wektorowej i niezależności układu wektorów. Zna określenie układu liniowych równań algebraicznych i rozumie pojęcie jego rozwiązania. W zakresie geometrii zna podstawy geometrii analitycznej, równania prostej, płaszczyzny oraz wybranych krzywych płaskich i powierzchni drugiego stopnia w przestrzeni trójwymiarowej. / K_W__ U01 – Umie posługiwać się w elementarnym zakresie językiem algebry i geometrii analitycznej, wykorzystując właściwe symbole i odpowiednie twierdzenia. Umie obliczać wyznaczniki macierzy. Umie wyznaczać macierze odwrotne. Umie rozwiązywać proste układy liniowych równań algebraicznych. Umie rozkładać wektory w bazie przestrzeni wektorowej. Umie wykonywać analitycznie proste konstrukcje geometryczne z użyciem prostych i płaszczyzn. / K_U__ U02 – Umie formułować i rozwiązywać proste problemy z wykorzystaniem rachunku wektorowego, rachunku macierzowego, układów liniowych równań algebraicznych i geometrii analitycznej. / K_U__ U03 – Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł (także anglojęzycznych); potrafi interpretować uzyskane informacje i formułować wnioski. Ma wyrobioną wewnętrzną potrzebę i umiejętność ustawicznego uzupełniania i nowelizacji nabytej wiedzy poprzez samokształcenie. / K_U__ K01 – Rozumie potrzebę ciągłego dokształcania się i odświeżania wiedzy, w szczególności związanej ze złożoną strukturą matematyki. / K_K__ |
Metody i kryteria oceniania: |
Przedmiot zaliczany jest na podstawie egzaminu sprawdzającego wiedzę (W01 i W02) i umiejętności (U01 i U02). Egzamin przeprowadzany jest w formie pisemnej lub pisemnej i ustnej. Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń. Ćwiczenia zaliczane są na podstawie wyników prac kontrolnych przeprowadzanych pod bezpośrednią kontrolą podczas zajęć (U01, U02, W01, W02) lub w formie zadań do samodzielnego rozwiązania (U01, U02, U03). Dodatkowo studenci otrzymują wskazówki do samodzielnego studiowana z zachętą do korzystania z różnorodnych źródeł wiedzy (U03 i K01). Skala ocen: dostatecznie (3) – student zna i rozumie większość wyłożonych zagadnień, umie rozwiązywać najprostsze zadania rachunkowe, rozumie treść najważniejszych twierdzeń; dobrze (4) – student zna i rozumie znaczną większość wyłożonych zagadnień, umie formułować i rozwiązywać najprostsze zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; bardzo dobrze (5) – student zna i rozumie wszystkie wyłożone zagadnienia, umie formułować i rozwiązywać zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; dość dobrze (3,5) i ponad dobrze (4,5) – pośrednio między dostatecznie i dobrze oraz między dobrze i bardzo dobrze. |
Praktyki zawodowe: |
nie dotyczy |
Właścicielem praw autorskich jest Wojskowa Akademia Techniczna.