Wojskowa Akademia Techniczna - Centralny System Uwierzytelniania
Strona główna

Rachunek prawdopodobieństwa

Informacje ogólne

Kod przedmiotu: WCYIXCNI-RP
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Rachunek prawdopodobieństwa
Jednostka: Wydział Cybernetyki
Grupy:
Strona przedmiotu: http://Statystyka.rezolwenta.eu.org
Punkty ECTS i inne: 3.00 LUB 2.00 (w zależności od programu) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Forma studiów:

niestacjonarne

Rodzaj studiów:

I stopnia

Rodzaj przedmiotu:

obowiązkowy

Forma zajęć liczba godzin/rygor:

realizowane formy zajęć: W – wykład, C –- ćwiczenia audytoryjne, L – ćwiczenia laboratoryjne, P – ćwiczenia projektowe, S – seminarium;

rygor: x – egzamin, + – zaliczenie na ocenę, z – zaliczenie ogólne

Studia niestacjonarne: W 12 /+; C 2 /+; L 6 /+; razem: 20 godzin, 2 punkty ECTS

Studia stacjonarne: W 18 /+; C 4 /+; L 10 /+; razem: 32 godziny, 2 punkty ECTS


Przedmioty wprowadzające:

Matematyka 1. / Student powinien znać: symbole i elementarne pojęcia logiki i teorii mnogości; funkcje elementarne; liczby rzeczywiste i zespolone; podstawowe pojęcia, określenia i twierdzenia algebry liniowej i geometrii analitycznej; rachunek wektorowy i macierzowy, przestrzenie wektorowe, układy liniowych równań algebraicznych i metody ich rozwiązywania; analityczne konstrukcje prostych i płaszczyzn; krzywe i powierzchnie drugiego stopnia.

Matematyka 2. / Student powinien znać: symbole, określenia, twierdzenia i przykłady dotyczące ciągów i szeregów liczbowych, rachunku różniczkowego i całkowego funkcji jednej zmiennej rzeczywistej oraz rachunku różniczkowego funkcji wielu zmiennych. Student powinien umieć obliczać granice ciągów i funkcji jednej zmiennej, znajdować pochodne i całki oznaczone i nieoznaczone oraz znajdować pochodne cząstkowe.

Analiza matematyczna. / Student powinien znać: symbole, określenia, twierdzenia i przykłady dotyczące rachunku różniczkowego i całkowego funkcji wielu zmiennych. Student powinien umieć obliczać całki wielokrotne.


Autor:

dr Lucjan Kowalski, dr hab. Marek Kojdecki



Bilans ECTS:

aktywność / obciążenie studenta w godzinach

studia stacjonarne (studia niestacjonarne*)


1. Udział w wykładach / 18 (12*)

2. Udział w ćwiczeniach rachunkowych / 4 (2*)

3. Udział w ćwiczeniach laboratoryjnych / 10 (6*)

4. Udział w ćwiczeniach projektowych / 0 (0*)

5. Udział w seminariach / 0 (0*)

6. Samodzielne studiowanie tematyki wykładów / 12 (18*)

7. Samodzielne przygotowanie do ćwiczeń / 4 (6*)

8. Samodzielne przygotowanie do laboratoriów / 10 (14*)

9. Realizacja projektu / 0 (0*)

10. Samodzielne przygotowanie do seminarium / 0 (0*)

11. Udział w konsultacjach / 2 (2*)

12. Przygotowanie do egzaminu / 0 (0*)

13. Przygotowanie do zaliczenia / 0 (0*)

14. Udział w egzaminie / 0 (2*)

Sumaryczne obciążenie pracą studenta:60 (60*) godzin / 2 (2*) punkty ECTS

Zajęcia:

– z udziałem nauczycieli (1+2+3+4+5+11+14): 34 (22*) godziny / 1 (1*) punkt ECTS

– powiązane z działalnością naukową (1 do 10): 58 (58*) godzin / 2 (2*) punkty ECTS

– o charakterze praktycznym (2+3+4+7+8+9): 28 (28*) godzin / 1 (1*) punkt ECTS

* oznacza kalkulację dla studenta studiów niestacjonarnych




Skrócony opis:

Przedmiot służy do poznania i zrozumienia przez studentów podstawowych pojęć i twierdzeń matematyki, szczególnie rachunku prawdopodobieństwa, oraz opanowania elementarnych umiejętności rachunkowych z zakresem wiedzy obejmującym: zmienne losowe, parametry zmiennych losowych, podstawowe rozkłady prawdopodobieństwa.

Pełny opis:

Tematy kolejnych wykładów (po dwie godziny lekcyjne):

1. Kombinatoryka.* Zbiory skończone; permutacje, kombinacje, wariacje; symbole Newtona.

2. Pojęcie i właściwości prawdopodobieństwa. Pojęcie prawdopodobieństwa. Przestrzeń probabilistyczna.

3. Pojęcie i właściwości prawdopodobieństwa.* Prawdopodobieństwo warunkowe. Niezależność zdarzeń.

4. Zmienne losowe. Zmienna losowa jednowymiarowa. Parametry rozkładu zmiennych losowych.

5. Zmienne losowe. Funkcja charakterystyczna zmiennej losowej. Rozkłady geometryczny i wykładniczy.

6. Podstawowe rozkłady prawdopodobieństwa.* Rozkłady jednostajny, dwumianowy, Poissona, normalny (Gaussa).

7. Zmienna losowa wielowymiarowa. Zmienna losowa dwuwymiarowa; parametry rozkładu.

8. Zmienna losowa wielowymiarowa. Rozkłady brzegowe i warunkowe.

9. Twierdzenia graniczne rachunku prawdopodobieństwa.

* oznacza zagadnienia realizowane indywidualnie przez studenta studiów niestacjonarnych

/ wykład z możliwym wykorzystaniem technik audiowizualnych; podanie zadań do samodzielnego rozwiązania i tematów do studiowania

Tematy 1., 2., 3., 4., 6. są tożsame z tematami z przedmiotu Matematyka 3.

Ćwiczenia / metody dydaktyczne

Tematy kolejnych zajęć (po dwie godziny lekcyjne):

1. Pojęcie i właściwości prawdopodobieństwa.* Pojęcie prawdopodobieństwa. Prawdopodobieństwo warunkowe. Niezależność zdarzeń.

2. Zmienne losowe. Zmienna losowa jednowymiarowa. Parametry rozkładu zmiennych losowych.

* oznacza zagadnienia realizowane indywidualnie przez studenta studiów niestacjonarnych

/ ćwiczenia rachunkowe ułatwiające opanowanie, zrozumienie i usystematyzowanie wiedzy wyniesionej z wykładów i własnych studiów studentów oraz nabycie umiejętności rachunkowych; podanie zadań do samodzielnego rozwiązania i tematów do studiowania; pisemna praca kontrolna

Tematy 1., 2. są tożsame z tematami z przedmiotu Matematyka 3.

Laboratoria / metody dydaktyczne

Tematy kolejnych zajęć (po dwie godziny lekcyjne):

1. Prawdopodobieństwo.* Zastosowania klasycznego określenia prawdopodobieństwa.

2. Podstawowe rozkłady prawdopodobieństwa. Rozkłady jednostajny, dwumianowy, Poissona, normalny (Gaussa). Rozkłady geometryczny i wykładniczy. Właściwości rozkładów.

3. Podstawowe rozkłady prawdopodobieństwa. Rozkłady jednostajny, dwumianowy, Poissona, normalny (Gaussa).Obliczanie prawdopodobieństw.

4. Zmienna losowa wielowymiarowa.* Rozkłady brzegowe i warunkowe.

5. Zmienne losowe i ich rozkłady. Praca kontrolna.

* oznacza zagadnienia realizowane indywidualnie przez studenta studiów niestacjonarnych

/ ćwiczenia laboratoryjne z wykorzystaniem programów uczących i programów narzędziowych, ułatwiające opanowanie, zrozumienie i usystematyzowanie wiedzy wyniesionej z wykładów i własnych studiów studentów oraz nabycie umiejętności rachunkowych; podanie zadań do samodzielnego rozwiązania i tematów do studiowania; pisemna praca kontrolna

Tematy 2., 3. są tożsame z tematami z przedmiotu Matematyka 3.

Literatura:

podstawowa:

R. Leitner, J. Zacharski, Zarys matematyki wyższej, część III, WNT, 1994.

M. Cieciura, J. Zacharski, Metody probabilistyczne w ujęciu praktycznym, Vizja Press & IT, 2007.

L. Kowalski, Statystyka, skrypt WAT, 2021.

J. Gawinecki, Matematyka dla informatyków, część I i II, Bell Studio, 2003.

uzupełniająca:

A. Plucińska, E. Pluciński, Probabilistyka, WNT, 2000.

A. Pacut, Rachunek prawdopodobieństwa, WNT, 1985.

J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, WNT, 2001.

D. Bobrowski, Probabilistyka w zastosowaniach technicznych, WNT, 1980.

W. Krysicki, J. Bartos, Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Część I i II, WNT, 1999.

Efekty uczenia się:

symbol / efekt uczenia się / odniesienie do efektów kierunku

Student, który zaliczył przedmiot,

W01 – Posiada podstawową wiedzę, stanowiącą bazę dla zrozumienia i studiowania przedmiotów kierunkowych, w zakresie rachunku prawdopodobieństwa. Zna podstawowe pojęcia, określenia i twierdzenia rachunku prawdopodobieństwa i rozkłady prawdopodobieństwa. / K_W02

W02 – Zna podstawowe metody obliczania prawdopodobieństw zdarzeń losowych. / K_W02

W03 – Zna interpretacje i sposoby obliczania najważniejszych parametrów zmiennych losowych oraz twierdzenia graniczne. / K_W02

U01 – Umie obliczać prawdopodobieństwa zdarzeń losowych, wykorzystując najważniejsze rozkłady prawdopodobieństwa. / K_U03

U02 – Umie formułować i rozwiązywać proste problemy z wykorzystaniem pojęć rachunku prawdopodobieństwa, rozkładów prawdopodobieństwa i twierdzeń granicznych. / K_U03

U03 – Potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł (także anglojęzycznych); potrafi interpretować uzyskane informacje i formułować wnioski. / K_U17

K01 – Rozumie potrzebę ciągłego dokształcania się i odświeżania wiedzy, w szczególności związanej ze złożoną strukturą matematyki. / K_K01

Metody i kryteria oceniania:

Przedmiot zaliczany jest na podstawie zaliczenia

sprawdzającego wiedzę (W01 i W02) i umiejętności (U01 i U02).

Zaliczenie przeprowadzane jest w formie pisemnej lub pisemnej i ustnej.

Warunkiem dopuszczenia do zaliczenia jest zaliczenie ćwiczeń rachunkowych i ćwiczeń laboratoryjnych.

Ćwiczenia rachunkowe zaliczane są na podstawie wyników prac kontrolnych przeprowadzanych pod bezpośrednią kontrolą podczas zajęć (U01, U02, W01, W02) lub w formie zadań do samodzielnego rozwiązania (U01, U02, U03).

Ćwiczenia laboratoryjne zaliczane są na podstawie wyników prac kontrolnych przeprowadzanych pod bezpośrednią kontrolą podczas zajęć (U01, U02, W01, W02) lub w formie zadań do samodzielnego rozwiązania (U01, U02, U03) oraz na podstawie sprawozdań z wybranych ćwiczeń.

Dodatkowo studenci otrzymują wskazówki do samodzielnego studiowana z zachętą do korzystania z różnorodnych źródeł wiedzy (U03 i K01).

Skala ocen: dostatecznie (3) – student zna i rozumie większość wyłożonych zagadnień, umie rozwiązywać najprostsze zadania rachunkowe, rozumie treść najważniejszych twierdzeń; dobrze (4) – student zna i rozumie znaczną większość wyłożonych zagadnień, umie formułować i rozwiązywać najprostsze zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; bardzo dobrze (5) – student zna i rozumie wszystkie wyłożone zagadnienia, umie formułować i rozwiązywać zadania rachunkowe oraz interpretować ich wyniki za pomocą twierdzeń; dość dobrze (3,5) i ponad dobrze (4,5) – pośrednio między dostatecznie i dobrze oraz między dobrze i bardzo dobrze.

Zajęcia w cyklu "Semestr letni 2024/2025" (jeszcze nie rozpoczęty)

Okres: 2025-03-01 - 2025-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 2 godzin więcej informacji
Laboratorium, 6 godzin więcej informacji
Wykład, 12 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Ćwiczenia - Zaliczenie ZAL/NZAL
Laboratorium - Zaliczenie na ocenę
Wykład - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Wojskowa Akademia Techniczna.
ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa 46 tel: +48 261 839 000 https://www.wojsko-polskie.pl/wat/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-5 (2024-09-13)